UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | |-----------------------|---------------------------------|---------------------|---------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | SCIENCE | | | 5124/03
5126/03 | | Paper 3 Chemistry | | Oc | tober/November 2008 | | | | | 1 hour 15 minutes | | Candidates answer Se | ection A on the Question Paper. | | | | Additional Materials: | Answer Booklet/Paper | | | #### **READ THESE INSTRUCTIONS FIRST** If you have been given an Answer Booklet, follow the instructions on the front cover of the booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE ON ANY BARCODES. ## Section A Answer all questions. Write your answers in the spaces provided on the question paper. # **Section B** Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. A copy of the Periodic Table is printed on page 16. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | |--------------------|--| | Section A | | | Section B | | | | | | | | | Total | | This document consists of 12 printed pages and 4 lined pages. # Answer **all** the questions. Write your answers in the spaces provided on the question paper. 1 Fig. 1.1 shows the composition by volume of dry, unpolluted air. Fig. 1.1 Complete Table 1.1 to give the names of these gases and their uses. One row has been completed for you. Table 1.1 | gas | name | use | |-------|-------|---------------| | gas 1 | argon | filling lamps | | gas 2 | | | | gas 3 | | | [4] © UCLES 2008 5124/03/O/N/08 For Examiner's Use 2 | | • | as gone aground on a coral reef. It is believed that the ship's tanks are half-filled with oric acid. Hydrochloric acid reacts with coral. | |-----|------|---| | (a) | | are supplied with a sample of the contents of the ship's tanks. Describe tests to w the presence of an acid and the presence of a chloride. | | | (i) | test for acid | | | | | | | | positive result | | | | | | | (ii) | test for chloride | | | | | | | | positive result | | | | [2] | | (b) | ship | other ship has a large amount of concentrated alkali on board. The captain of this o states that this alkali will neutralise the acid. He suggests pumping all the alkali into tanks of the wrecked ship. | | | Giv | e one reason why this should not be done. | | | | | | | | [1] | | (c) | | al consists mainly of calcium carbonate. Name a substance that is formed when al reacts with hydrochloric acid. Give the chemical formula of this substance. | | | nan | ne | | | forn | nula[2] | | | | | | | | | | | | | 3 (a) Complete Table 3.1 to describe the neutral atoms of two different isotopes of uranium. For Examiner's Use Table 3.1 | | ²³⁵ U | ²³⁸ ₉₂ U | |----------------------------------|------------------|--------------------------------| | number of protons in each atom | 92 | | | number of neutrons in each atom | | | | number of electrons in each atom | | 92 | [4] (b) (i) In the manufacture of uranium metal, uranium dioxide is first converted into a fluoride. Balance this equation for the reaction. $$UO_2 + HF \longrightarrow UF_4 + H_2O$$ (ii) Uranium tetrafluoride is then reduced to uranium metal by heating with magnesium, according to this balanced chemical equation. $$UF_4 + 2Mg \longrightarrow 2MgF_2 + U$$ Calculate the mass of uranium tetrafluoride and the mass of magnesium that combine to manufacture 10 tonnes of uranium. [Relative atomic masses: A_r: Mg, 24; F, 19; U, 238.] mass of uranium tetrafluoride needed = tonnes mass of magnesium needed = tonnes [4] For Examiner's Use (b) Fig. 4.1 shows some of the substances that are made from ethene. Complete the **dotted spaces** in Fig. 4.1 with names, chemical structures and types of reactions. | 5 | This question is about the Periodic Table shown on page 16 of this question paper. | | | | |---|--|---|-------------------|--| | | (a) | What is the general name given to the elements in Group I? | Examiner's
Use | | | | | [1] | | | | | (b) | Table 5.1 gives information about five elements. Parts of the table have been completed. Fill in the empty boxes in the table. | | | Table 5.1 | element | member of
Group I | metal | rate of reaction with cold water | |-----------|----------------------|-------|----------------------------------| | potassium | yes | yes | very fast | | sodium | yes | yes | fast | | lithium | yes | | slow | | copper | | yes | | | rubidium | | yes | | [5] 7 The diagrams A, B, C, D, E and F in Fig. 6.1 represent the particles in different substances. 6 D Ε Fig. 6.1 Which of the diagrams A, B, C, D, E and F best represents a (a) liquid element, [1] (b) gaseous compound, [1] (c) solid mixture, [1] (d) liquid mixture, For Examiner's Use [1] [1] (e) gaseous element? 7 A metal reacts with an excess of dilute acid to form a gas. The volume of gas produced is measured over the first 40 seconds of the reaction. After this time about 110 cm³ of the gas has been collected. A datalogger is used to plot the graph shown in Fig. 7.1. For Examiner's Use Fig. 7.1 | (a) | Hov | v does the rate of this reaction change during the first 40 seconds of the reaction? | |-----|-------------|--| | | | [1] | | (b) | (i) | Sketch on Fig. 7.1 how you expect the graph to extend over the next 120 seconds. | | | (ii) | The experiment is repeated with the same mass of metal but with excess of a slightly less concentrated solution of acid. | | | | On Fig. 7.1 sketch the graph you would expect for this second experiment. [4] | | (c) | Use
grap | your knowledge of how particles move in liquids to explain the shape of these phs. | | | | | | | | | | 8 | (a) | State one of the problems of using non-biodegradable plastics. | | |---|-----|---|-----| | | | | [1] | | | (b) | Give two reasons why metals such as copper should be recycled. | | | | | 1 | | | | | 2 | [2] | For Examiner's Use #### **Section B** ### Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. - **9** When combining with other elements, chlorine can form both ionic bonds and covalent bonds. - (a) Draw the electronic structures of **two** named substances that contain chlorine, **one** named substance with ionic bonds and **one** named substance with covalent bonds. Label one structure IONIC and the other COVALENT. [6] - **(b)** Give **two** ways in which the physical properties of these two substances differ. [2] - (c) Use your knowledge of the particles in ionic and covalently bonded substances to suggest reasons for these differences. [2] - 10 (a) Solid glucose, C₆H₁₂O₆, can be changed into a solution of ethanol by fermentation. Briefly describe how this change could be completed in the laboratory. Write an equation for the change. [7] - **(b)** Calculate the relative molecular mass of glucose and the percentage by mass of oxygen in each molecule of glucose. [Relative atomic masses: *A_r*: H, 1; C, 12; O, 16.] © UCLES 2008 5124/03/O/N/08 11 Fig. 11.1 describes the reactions of several substances. Fig. 11.1 - (a) Name substance G, H, I, J, K and L. [6] - **(b)** Write an equation for any **one** of the reactions shown in Fig. 11.1. [2] - (c) Give a use for **G** and a use for **L**. [2] | 1 | |---|
 | |------| | | | | |
 | | | | | | | | | |
 | | | | | | | |
 | | | |
 | |
 | | | | | |
 | | | | | | | | | |
 | | | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | 1 | |---| | I | For
Examiner's | |-------------------| | Use | University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. DATA SHEET ۲ ا | | | 0 | 4 He Helium | 20 Neon 10 | 40 Ar Argon | 84 Kr
Krypton 36 | 131
Xe
Xenon
54 | Radon
Radon
86 | | |------------------------------------|-------|-----|---------------------------|------------------------|------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|----------------------------------| | The Periodic Table of the Elements | | IIA | | 19 Fluorine | 35.5 C1 Chlorine | 80 Br
Bromine 35 | 127 I lodine lodine 53 | At
Astatine
85 | | | | | IN | | | 32
S
Sulphur | 79 Selenium | 128
Te
Tellurium
52 | Po Polonium 84 | | | | | ^ | | 14 N Nitrogen 7 | | 75 AS Arsenic 33 | | 209 Bi Bismuth | | | | | ΛI | | | 28
Si
Silicon | 73 Ge Germanium | 119
Sn
Tin | 207 Pb Lead Lead | | | | | ≡ | | 11
Boron
5 | 27
A1
Aluminium
13 | 70 Ga
Gallium
31 | 115
In
Indium
49 | 204 T1 Thallium | | | | | | | | | 65
Zn
Zinc
30 | Cd
Cadmium
48 | 201 Hg Mercury | | | | | | | | | 29 | 108 Ag
Silver
47 | 197
Au
Gold | | | le of the | Group | | | | | S9 Nickel | 106 Pd Palladium 46 | 195 Pt Platinum 78 | | | dic Tab | ั้ | | | 1 | | | _ r\ | 192 Ir
Iridium
77 | | | he Perio | | | 1
X
Hydrogen | | | 56
Fe
Iron | Ru
Ruthenium
44 | 190
Os
Osmium
76 | | | _ | | | | | | 55
Wn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | | | | | | | | 48 Ti Titanium 22 | 91
Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | | | | | | | | 45
Sc
Scandium
21 | 89 Y Yttrium 39 | 139 La Lanthanum 57 * | 227 Ac Actinium 89 | | | | = | | Be Beryllium | 24 Mg Magnesium | 40 Ca Calcium | 88
Sr
Strontium
38 | 137 Ba Barium 56 | 226
Ra
Radium
88 | | | | _ | | 7 Li Lithium | 23 Na Sodium | 39 K Potassium | 85
Rb
Rubidium
37 | 133
CS
Caesium
55 | Fr
Francium
87 | | JCL | ES 2 | 800 | | | | 5124/03 | 3/O/N/08 | | | Lawrencium 103 175 **Lu** Lutetium Ľ 173 **Yb**Ytterbium 70 Nobelium Md Mendelevium 101 **169 Tm**Thullum **Fa** Fermium 167 **Er** Erbium 89 **E**SEINSTEINIUM 165 **Holmium** Dysprosium 66 **C**alifornium 162 **D** 159 **Terbium B**erkelium 157 **Gd** Gadolinium 64 Curium 152 **Eu** Europium **Am** Americium Samarium 62 **Pu** Plutonium Promethium **Neptunium** Pm Neodymium 238 **U** ⁺ ₽ Praseodymium 59 **Pa** Protactinium 232 **Th** Thorium 140 Cerium 28 90 The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). b = proton (atomic) number q a = relative atomic mass X = atomic symbol a 🗙 Key *58-71 Lanthanoid series †90-103 Actinoid series